
Are LLMs the END of Programming?

Ilan Barr, Nancy Patel, Yifan Yuan

Abstract

This study evaluates the performance of Large Language
Models (LLMs) against human coders in solving program-
ming challenges across three programming languages and
problem categories using a dataset from LeetCode. We com-
pare five LLMs—GPT-3.5, GPT-4, Claude Haiku, Claude
Sonnet, and Claude Opus—focusing on solution acceptance
rates, runtime efficiency, memory usage, and error analysis.
Preliminary findings show that LLMs generally surpass hu-
man coders, particularly after adjusting human performance
metrics to account for biases in data collection. The analy-
sis also reveals that problem characteristics such as complex-
ity and description length significantly influence LLM perfor-
mance. While LLMs demonstrate substantial potential in en-
hancing programming efficiency, our results suggest a more
complementary role alongside human expertise, particularly
in complex problem-solving scenarios.

1. INTRODUCTION
The rapid evolution of Large Language Models (LLMs) has
brought an onslaught of automation capabilities, from au-
dio transcription, text parsing, and generative features. With
such capabilities, these LLMs are rapidly integrating into
multiple professions, such as providing sports commentary
in real-time, summarizing legal documents, and even cre-
ating music. Our project is interested in the integration of
LLMs in a different professional landscape: software engi-
neering. Through our study, we aim to delve into the relative
strengths and weaknesses of LLMs versus humans and ex-
amine the feasibility of LLMs working in conjunction with
human software engineers and potentially even substituting
them altogether in the future.

Related Work
This March, the entrance of DevinAI shocked the software
engineering world [1]. The team behind DevinAI claims it
is the “first fully autonomous AI software engineer”, capa-
ble of building apps end-to-end and autonomously finding
and fixing bugs. However, metrics released for DevinAI con-
clude that it can only solve approximately 14% of the issues
it is given. Thus, some critics believe that human-AI pair
programming will be the more realistic future of software
engineering [2].

”Is GitHub copilot a substitute for human pair-
programming?” investigates the productivity and quality
of human-human pair programming versus human-AI pro-
gramming using GitHub Copilot. Imai finds that although
the human-AI pairing generated more lines of code than the
human-human pairing in the same amount of time, the code
quality was lower [3]. Ma et. al. observe in their paper “Is
AI the better programming partner?” that pair programming
(both human-human and human-AI) is less productive when
there are mismatched expertise levels between the two par-
ties. Thus, the authors hypothesize that, for human-AI pair-
ing to be effective, AIs should be able to adapt to different
expertise [4].

To determine the relative strengths and weaknesses of
the popular AI Chat-GPT, Nascimento et. al assessed LLM-
generated code versus software-engineer-generated code on
popular technical coding interview site, Leetcode. The study
finds that GPT-4 outperforms novice programmers, solely
when tackling coding problems of easy and medium dif-
ficulty. However, the paper did not have enough evidence
to assert that GPT-4 surpasses experienced programmers in
coding problems of any difficulty (easy, medium, or hard).
For their study, Nascimento et. Al focus on 1 LLM (GPT-
4), 1 programming language (C++), and 1 question category
(Array) [5].

We seek to expand on the empirical study conducted by
Nascimento et. al. by testing 5 LLMs, 3 programming lan-
guages, and 3 question categories. By exploring how human-
authored versus AI-generated solutions for specific pro-
gramming paradigms compare against each other, we aim
to continue developing the groundwork for more informed
human-in-the-loop approaches to software engineering.

2. PRELIMINARIES

Before describing our experiments, we briefly discuss the
setting in which we collected all of our human- and LLM-
generated code. Our collection process took place between
April 1-25, 2024, before GPT-4 rolled out its cross-chat
memory control [6]. As a result, we expect that each LLM-
generated code snippet we collected is independent of the
other LLM-generated code snippets (i.e. each LLM response
is unaffected by other responses in separate chats).



3. METHODOLOGY

3.1 Question Collection
Our experiments begin by developing a dataset of 9 ques-
tions from LeetCode. We chose LeetCode for our dataset
over other coding benchmarks, like SWE-Bench or Hu-
manEval, because the latter datasets do not offer human-
completed solutions (with total acceptance rates) for com-
parison [10, 11]. For our dataset, we picked three ques-
tions each from three of the most popular programming cate-
gories, Dynamic Programming (#5, #10, #53), Matrix (#542,
#1210, #1970), and Sorting (#217, #630, #2402). Note that
many of these questions were “multi-tagged.” For exam-
ple, #1970 is assigned to the Matrix category, but also be-
longs to the Array, Depth First Search (DFS), Breadth First
Search (BFS), Hash Map, and Union Find categories. In to-
tal, there is 1 easy-difficulty question, 3 medium-difficulty
questions, and 5 hard-difficulty questions. Because Nasci-
mento et. al. found that GPT-4 only outperformed novice
programmers on easy and medium-difficulty questions, we
are interested in delving deeper into LLM performance on
hard-difficulty coding problems. As a result, our question
selection is skewed toward harder problems.

3.2 Programming Language Selection
For each question, we collect 3 human submissions and 3
AI-generated codes (for each of our 5 LLMs) in each of
the following programming languages: Python, C++, and
Go. We chose these languages because we are interested in
seeing if LLMs can consistently replicate their performance
on languages with different structures, memory capabilities,
and programming paradigms. Python is the most popular of
the three languages because of its simplicity: it is dynami-
cally typed, has automatic garbage collection, and follows
an object-oriented paradigm. C++ is second-most popular:
it is object-oriented like Python but does not support auto-
matic garbage collection. Lastly, Go is the least popular: it
is statically typed like C++, but unlike C++ and Python, it is
a procedural programming language [8].

3.3 Large Language Model Selection
We chose to use the following 5 LLMs: GPT-3.5, GPT-4,
Claude Haiku, Claude Sonnet, and Claude Opus. This choice
was inspired by the benchmark comparisons released by
DevinAI which compares DevinAI against GPT-3.5, GPT-4,
and Claude 2 [1]. According to Anthropic (the team behind
Claude 2 and 3), the LLMs are ranked as following for Hu-
manEval: Opus (84.9%), Haiku (75.9%), Sonnet (73.0%),
GPT-4 (67.0%), and GPT-3.5 (48.1%) [7]. We expect to see
similar results in section 4.

3.4 Code Collection
3.4.1 Human-Generated Solutions On LeetCode, there
is a “Discussion” section accompanying each problem,
where users post their solutions. For our study, we used this
section to collect human-generated code using the process
outlined as follows. First, we filter the “Discussion” sec-
tion based on the programming language of interest (Python,

C++, or Go). It is important to note that posts are sorted by
rating and views, with the highest-rated and most-viewed
posts displayed first. Thus, to minimize any sampling bias,
we randomly pick each submission using a random number
generator.

3.4.2 AI-Generated Solutions To ensure a robust eval-
uation of artificial intelligence models, our methodology
involved a carefully designed setup for collecting AI-
generated solutions. The process is outlined as follows:

1. Question Modification: Each problem selected from
LeetCode was initially modified to create a novel chal-
lenge not directly encountered during the training of the
language models. This modification was aimed at assess-
ing the genuine problem-solving abilities of the models
under conditions that prevented any benefit from previous
exposure to similar problems. If a modification led to all
language models (LLMs) consistently failing to pass any
tests—indicating an excessively stringent alteration—the
original version of the problem was used to maintain a
balance of challenge and feasibility.

2. Isolated Problem-Solving Sessions: Each LLM was
tasked with solving these problems in a separate, con-
trolled environment. This isolation ensured that the per-
formance data from one model did not influence another,
thereby maintaining the integrity of the experimental con-
ditions.

3. Uniform Problem Presentation: The problems were
presented to each LLM using a standardized prompt for-
mat. As demonstrated in Figure 1, the prompt included
a clear articulation of the problem requirements, con-
straints, and expected outputs, along with a code template
for implementation. The standardized prompt helped to
ensure that all models were provided with the same level
of detail and clarity, minimizing variability in understand-
ing or interpretation that could affect the performance out-
comes.

3.5 Research Metrics
In their paper “Perfection Not Required?” Weisz et. al ask
software engineers under what conditions they would accept
LLM-generated code [9]. The study finds that software engi-
neers tend to accept code through verification, not explana-
tion. In other words, functional metrics were more important
to these engineers than non-functional metrics (i.e. explana-
tion or readability).

Thus, we chose to measure human and AI-generated so-
lutions using the following functional metrics: number of
passing tests, runtime performance, and memory usage. To
test each of these metrics, we take each solution and execute
it within a simulated LeetCode environment. Once submit-
ted, the site would provide three pieces of information: the
number of test cases passed, the runtime (and the percentage
of other submissions it beat), and the memory usage (and the
percentage of other submissions it beat).

In some instances, the executed code did not provide any
of these metrics because of errors like ”Compile Error”,

2



Figure 1: Example Prompt for AI LeetCode Task

”Runtime Error”, and ”Time Length Exceeded”. The one ex-
ception is the ”Wrong Answer” error, which would offer the
number of passing tests, but not runtime performance, and
memory usage. A more detailed error analysis is offered in
section 4.4.

Lastly, we note that there is potential survivorship bias
in the human-generated responses because users only post
correct submissions to the ”Discussion” section. To mitigate
this bias, we collect each problem’s acceptance rate to re-
standardize the percentage of human-generated codes that
are accepted by LeetCode.

4. RESULTS
4.1 Overall Performance Evaluation
Across all question categories (Dynamic Programming, Ma-
trix, and Sorting), there are varied success rates for each
LLM. Notably, Claude Opus achieved the highest overall
solution passing rate at 84.19%, followed by GPT-4 with a
75.44% passing rate as shown in Figure 2.

Further, within each category, performance was signifi-
cantly influenced by the nature of the selected questions.
In each category, questions that had fewer submissions and
longer descriptions on LeetCode generally had lower pass-
ing rates, suggesting that the complexity of problem descrip-
tions and their popularity among coders might affect LLM
performance more than the problem category itself. How-
ever, one should note that problem complexity/length are of-
ten correlated with problem category on LeetCode. For ex-
ample, there are more easy-difficulty and lower-complexity
problems in the Array category than in the Dynamic Pro-
gramming category.

4.2 Comparison of LLMs
Across all categories, GPT-4 consistently outperformed
other models in terms of runtime, beating 68.56% of the sub-

missions on LeetCode. GPT-4 also showed superior memory
management, beating 61.49% of the solutions on LeetCode.
In contrast, despite Opus’s strong passing rates, it lagged
in runtime and memory efficiency, with only 59.85% and
54.34% of submissions beaten, respectively, which is the
lowest among all models.

4.3 Human vs. LLM Performance
For the solutions we collected, human participants appeared
to perform exceptionally well with a 96.23% passing rate.
However, these figures were derived from a pool of already
successful solutions, introducing a survivorship bias that in-
flated human performance metrics.

As mentioned in section 3.5, to address this bias and pro-
vide a fair comparison, we recalculated human performance
metrics by adjusting for the inherent difficulty of the prob-
lems, as reflected by the average passing rates on LeetCode.
Upon this adjustment, the real passing rate for human solu-
tions was significantly reduced to 44.81%. This re-calibrated
figure starkly contrasts the LLMs’ performance; even the
lowest-performing LLM, Claude Haiku, demonstrated a so-
lution passing rate of 67.33%, markedly higher than the ad-
justed human rate.

Furthermore, our experimental results show that AI mod-
els substantially outperformed human programmers in terms
of runtime and memory efficiency. For instance, GPT-4 con-
sistently exceeded human performance, with its code beat-
ing 68.56% of LeetCode submissions in terms of runtime.
GPT-4 generated code also beat 61.49% of Leetcode sub-
missions in terms of memory efficiency. In comparison, hu-
man solutions only managed to beat 54.98% of submissions
in runtime and 53.44% in memory performance on average.
Even the least efficient LLM model in these respects, Opus,
performed better than human coders, with runtime and mem-
ory metrics beating 59.85% and 54.34% of LeetCode sub-
missions, respectively.

Initially, we had planned to conduct a t-test analysis to de-
termine if the mean passing rates of human solutions versus
LLM-generated solutions are statistically significant. How-
ever, during our data preparation phase, we noted that Leet-
code does not release standard deviations for each of its
problems’ passing rates. Attempting to estimate them us-
ing the data from submissions would result in an extremely
low standard deviation for human submissions because we
are collecting from a (correct) subset of total submissions.
Thus, conducting such a test would have meaningless re-
sults because of the skewed representation of data. Hence,
we compare empirical averages for our analyses instead.

4.4 Error Analysis
Next, we conduct an error analysis, documenting which er-
rors are most frequent among each of the LLMs. Our error
analysis reveals that across all LLMs, the most frequent error
types are ”Wrong Answer” and ”Runtime Error”. As shown
in Figure 2, both GPT-4 and Opus models exhibited a higher
proportion of ”Wrong Answers” and ”Runtime Errors” com-
pared to the other error categories. This observation suggests
that the code generated by these models possessed the cor-
rect syntax and successfully passed the compilation phase.

3



Figure 2: Summary of Performance Metrics Across ALL Languages and All categories

However, the presence of ”Wrong Answers” and ”Runtime
Errors” indicates the existence of logical inconsistencies or
the failure to consider edge cases within the code, leading to
the unsuccessful passing of test cases.

In contrast, the Claude Haiku model demonstrated a dif-
ferent error profile, with a higher incidence of ”Compile Er-
rors” and ”Time Limit Exceeded” (TLE) errors. Compile er-
rors arise when the code violates the syntax or semantics
of the programming language, preventing successful com-
pilation. The higher frequency of ”compile errors” in the
code generated by Claude Haiku suggests potential issues in
code generation, such as incorrect syntax, improper variable
declarations, or incompatible data types. On the other hand,
TLE errors occur when the execution of the code exceeds
the allocated time limit. The presence of TLE errors in the
Claude Haiku model indicates potential inefficiencies in the
generated code, such as sub-optimal algorithms or excessive
computational complexity.

Once again, it is worth noting that error analysis for hu-
man participants was not applicable in this study, as their
solutions were sourced from a pool of previously successful
submissions. This approach ensures the correctness and ef-
ficiency of human-generated code, serving as a benchmark
for evaluating the performance of AI models.

4.5 LLM Performance by Problem Category
The performance of the LLMs varied across the Dynamic
Programming (DP), Matrix, and Sorting categories as shown
in Figure 3.

In the DP category, all models demonstrated nearly per-
fect solution acceptance rates, suggesting high competencies
in applying DP principles.

The Matrix category, however, proved challenging. The
average passing rate for LLMs was 49.05%, with the Haiku
model performing the worst at 30.78%. Matrix problems in-
volve complex operations on two-dimensional arrays, indi-
cating limitations in AI models’ ability to comprehend and
manipulate matrix data structures effectively.

The LLMs generally performed well in the Sorting cate-
gory, with GPT-4 excelling at an 82.11% passing rate and
efficient runtime and memory performance. The strong per-
formance suggests AI models’ proficiency in understanding
and implementing optimal sorting techniques.

4.6 LLM Performance by Problem Characteristics
Further analysis revealed that Language Models (LLMs)
performance was strongly correlated with problem charac-

teristics such as description length and submission rates on
LeetCode, rather than problem categories themselves.

Matrix and Sorting problems in our experiment had lower
submission rates, as shown in Figure 2 where one of the
questions we selected (#1210) for Matrix only had approxi-
mately 19,000 submissions. Questions in Matrix and Sorting
categories tend to have longer descriptions (over 300 words)
as well. Meanwhile, DP problems had higher submissions
(9M) and concise descriptions (under 50 words). Despite
the inherent complexity of DP problems, LLMs performed
better at DP problems, potentially because of the greater
availability of training data, higher submission rates, and
reduced complexity in understanding problem statements
from shorter descriptions.

4.7 LLM Performance by Programming Language
Our research yielded intriguing findings regarding the per-
formance of Large Language Models (LLMs) across differ-
ent programming languages. As depicted in Tables 3, 4, and
5 in the Appendix, LLMs generally exhibited the better per-
formance in Go compared to Python and C++. Notably, for
many questions, the average LLM performance surpassed
more than 70% of human solutions on LeetCode in terms of
runtime and memory efficiency using Go.

However, while LLMs may have a slight advantage in
generating efficient code in Go, their overall performance re-
mains relatively consistent across Python and C++. The sim-
ilarity in performance across languages suggests that LLMs
might have the ability to learn and adapt to the specific syn-
tax, semantics, and best practices of different programming
languages.

5. DISCUSSION
5.1 Evaluation of Experimental Design and Data
Collection
Our experimental design involved testing 5 Large Language
Models (LLMs)— GPT-3.5, GPT-4, Claude Haiku, Claude
Sonnet, and Claude Opus— across 3 programming lan-
guages and 3 distinct coding problem categories on Leet-
Code. This broad spectrum allowed us to assess the robust-
ness and versatility of LLMs in varied coding environments
and problem complexities. The strength of this approach lies
in its comprehensive coverage, which provides a nuanced
understanding of LLM capabilities beyond simple task ex-
ecution, examining their performance in terms of runtime
efficiency, memory usage, and error frequency.

4



Figure 3: Summary of Performance Metrics Across ALL Languages and Different categories

However, while LeetCode offers a controlled environment
to systematically evaluate the coding capabilities of LLMs,
it does not fully represent the breadth and depth of chal-
lenges faced by software engineers (SWEs) in real-world
scenarios. LeetCode problems are typically algorithmic puz-
zles designed to test specific programming skills and the-
oretical knowledge, which are only a subset of the skills
required in software development. In professional settings,
SWEs must also handle tasks such as debugging legacy
code, integrating APIs, managing databases, working within
complex software architectures, and collaborating in team
environments. These tasks often involve dealing with am-
biguous requirements, making architectural decisions, and
understanding the business logic that goes beyond the scope
of algorithmic problem-solving typically found on Leet-
Code.

The reliance on LeetCode as a test platform may therefore
limit our understanding of how well LLMs can perform in
real-world software development tasks. The platform’s fo-
cus on individual, often isolated challenges may overlook
how LLMs handle larger, more integrated projects that re-
quire a combination of coding proficiency, system design,
and maintenance capabilities. Moreover, the discrete nature
of LeetCode problems does not account for aspects of soft-
ware development like version control, code review, scala-
bility considerations, and security implications, which are
crucial for a comprehensive assessment of an SWE’s work.

In light of these limitations, future research should con-
sider incorporating more diverse and representative tasks
that encompass a wider range of software engineering chal-
lenges. This could involve using project-based assessments,
integrating tasks from open-source projects, or creating
simulated software development environments that reflect
the complex nature of modern software projects. Such ap-
proaches would provide a more accurate gauge of the po-
tential for LLMs to contribute to or enhance the software
development lifecycle, thereby offering deeper insights into
their practical utility and limitations in the field of software

engineering.

5.2 Future Implications
As we have seen in this study, LLMs can reliably outper-
form humans on Leetcode in a variety of tasks. LLM devel-
opment is still in its early stages, and companies are pouring
billions of dollars a year into the development of more so-
phisticated LLMs. We expect the trend will continue and the
gap between human and LLM software engineers will con-
tinuously expand in the coming years.

While the humans submitting LeetCode problems may
not be a fair representation of professional software engi-
neers, as we mentioned in section 5.1, if LLMs have not al-
ready reached this professional level, they will soon. There
is a lot of uncertainty right now about what the future of
software development will look like as LLMs continue to
improve in that area. Assuming LLMs can code up to par
with a professional software engineer, LLMs will be able
to do so at a fraction of the cost. Thus, as we have seen in
other industries that have been usurped by technology and
automation, the jobs surrounding the space will inevitably
change.

5.3 Implications for Programming Education
For over 70 years, the evolution of programming languages
has been marked by an ongoing quest to simplify the com-
mon problems in programming. From the creation of high-
level programming languages in the 1950s, aimed at bridg-
ing the gap between human reasoning and machine opera-
tions, to the development of user-friendly programming in-
terfaces in recent decades, there has been a continuous effort
to make programming simpler and easier to understand. De-
spite these advancements, programming remains a skill that
requires significant knowledge, logical thinking, and talent.

With the advent of Large Language Models (LLMs) as we
studied in this experiment, we may be witnessing a pivotal
shift. Unlike traditional programming, where mastery over
syntax and semantics is essential, LLMs allow individuals

5



to engage in ”conversational programming.” With this prac-
tice, users can code in their spoken language, with LLMs
then translating those instructions into functional code. Our
study already highlights the vast capabilities of these exist-
ing models to generate solutions for complex problems with
efficiency and accuracy surpassing human performance.

Given these developments and studies, a fundamental
question arises: is it still necessary to teach traditional
programming, or should educational systems shift towards
teaching students how to effectively interact with LLMs like
the GPTs? As LLMs advance rapidly, fueled by the signifi-
cant investments and research, driven by enormous financial
benefits mentioned in section 5.2, traditional coding tasks
that involve writing detailed lines of code might become less
prevalent.

However, this does not render the teaching of program-
ming obsolete. Instead, it suggests a transformation in the
curriculum. Here, we suggest that future programming edu-
cation should focus more on the following areas:
• AI Literacy: Understanding how AI models work, in-

cluding their strengths, limitations, and ethical implica-
tions. As LLMs become integral tools in programming,
education in these technologies must go beyond mere us-
age instructions. It should aim to build a deep understand-
ing of how AI works, its limitations, and its broader im-
pacts. This will ensure that future professionals are not
only proficient in using AI but are also capable of crit-
ically assessing, managing, and directing these tools re-
sponsibly and ethically in the evolving landscape of soft-
ware development.

• Problem-Solving and Design Thinking: In an era where
AI can handle an increasing array of programming tasks,
the human role in software development is evolving to-
wards more complex problem formulation and system de-
sign. This shift necessitates a deeper focus on problem-
solving and design-thinking skills within programming
education, which are crucial for leveraging AI capabili-
ties effectively.

• Human-AI Collaboration: As AI technologies become
integral to software development processes, the ability to
manage projects that leverage both human and AI con-
tributors is becoming increasingly important. Human-AI
collaboration is not merely about using AI as a tool but in-
tegrating AI into the software development team in a way
that amplifies both the AI’s capabilities and the human
team’s skills.

6. CONCLUSION
The results of this study on the application of Large Lan-
guage Models (LLMs) in programming present a transfor-
mative vision for the future of software development and
education. While our experiments reveal that LLMs can
outperform human developers in efficiency and problem-
solving within the constrained environment of LeetCode,
these results do not immediately translate to a comprehen-
sive takeover of programming jobs by AI. Instead, the re-
sults highlight the potential for AI to augment human abili-
ties, particularly in well-defined problem spaces, where the

problem descriptions are concise and straightforward. As
AI continues to evolve and as investment in this technol-
ogy grows, the role of software developers is likely to shift
towards more complex and creative problem-solving tasks.
Education systems should strategically plan for the upcom-
ing change within the next five to ten years, emphasizing the
development of skills that enable effective human-AI collab-
oration. Classes, like CSE518A: Human-in-the-Loop Com-
putation at Washington University in St. Louis, are great ex-
amples of such courses. Ultimately, as the landscape of tech-
nology progresses, the fusion of human ingenuity with ad-
vanced AI capabilities may unlock new realms of possibility
in software development and beyond.

7. REFERENCES
[1]https://www.cognition-labs.com/introducing-devin
[2]https://societysbackend.com/p/devin-has-exposed-
software-engineers
[3]https://dl.acm.org/doi/abs/10.1145/3510454.3522684
[4]https://arxiv.org/abs/2306.05153
[5]https://arxiv.org/abs/2305.1183
[6]https://openai.com/blog/memory-and-new-controls-
for-chatgpt
[7]https://www.vellum.ai/blog/llm-benchmarks-
overview-limits-and-model-comparison
[8]https://www.statista.com/statistics/793628/worldwide-
developer-survey-most-used-languages/
[9]https://arxiv.org/abs/2104.03820
[10]https://www.swebench.com/
[11]https://paperswithcode.com/dataset/humaneval

8. APPENDIX
Refer to the next few pages for more information on our full
data collection and example LLM-generated codes.

6



Figure 4: Appendix for All DP Questions Collected

7



Figure 5: Appendix for All Sorting Questions Collected

8



Figure 6: Appendix for All Sorting Questions Collected

9



Figure 7: Appendix for Example ChatGPT Answer

10



Figure 8: Appendix for Example Claude Answer
11


